
J. Fluid Mech. (2010), vol. 656, pp. 481–506. c© Cambridge University Press 2010

doi:10.1017/S0022112010001254

481

Dynamics and stability of an annular
electrolyte film

D. T. CONROY1, R. V. CRASTER2†, O. K. MATAR1

AND D. T. PAPAGEORGIOU1,3

1Department of Chemical Engineering, Imperial College London, South Kensington Campus,
London SW7 2AZ, UK

2Department of Mathematical and Statistical Sciences, University of Alberta, Edmonton,
Alberta T6G 2G1, Canada

3Department of Mathematics, Imperial College London, South Kensington Campus,
London SW7 2AZ, UK

(Received 30 October 2009; revised 8 March 2010; accepted 8 March 2010;

first published online 26 May 2010)

We investigate the evolution of an electrolyte film surrounding a second electrolyte
core fluid inside a uniform cylindrical tube and in a core-annular arrangement, when
electrostatic and electrokinetic effects are present. The limiting case when the core
fluid electrolyte is a perfect conductor is examined. We analyse asymptotically the
thin annulus limit to derive a nonlinear evolution equation for the interfacial position,
which accounts for electrostatic and electrokinetic effects and is valid for small Debye
lengths that scale with the film thickness, that is, charge separation takes place
over a distance that scales with the annular layer thickness. The equation is derived
and studied in the Debye-Hückel limit (valid for small potentials) as well as the
fully nonlinear Poisson–Boltzmann equation. These equations are characterized by an
electric capillary number, a dimensionless scaled inverse Debye length and a ratio of
interface to wall electrostatic potentials. We explore the effect of electrokinetics on the
interfacial dynamics using a linear stability analysis and perform extensive numerical
simulations of the initial value problem under periodic boundary conditions. An
allied nonlinear analysis is carried out to investigate fully singular finite-time rupture
events that can take place. Depending upon the parameter regime, the electrokinetics
either stabilize or destabilize the film and, in the latter case, cause the film to
rupture in finite time. In this case, the final film shape can have a ring- or line-
like rupture; the rupture dynamics are found to be self-similar. In contrast, in the
absence of electrostatic effects, the film does not rupture in finite time but instead
evolves to very long-lived quasi-static structures that are interrupted by an abrupt re-
distribution of these very slowly evolving drops and lobes. The present study shows
that electrokinetic effects can be tuned to rupture the film in finite time and the
time to rupture can be controlled by varying the system parameters. Some intriguing
and novel behaviour is also discovered in the limit of large scaled inverse Debye
lengths, namely stable and smooth non-uniform steady state film shapes emerge as a
result of a balance between destabilizing capillary forces and stabilizing electrokinetic
forces.
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1. Introduction
Annular thin films, either exterior or interior to a rigid cylindrical wall, consist of

a liquid layer of small radial extent adjacent to the wall, separating it from another
liquid or a gas. Understanding this core-annular arrangement, or its exterior analogue,
is important to a number of applications. These include the flows of the liquid lining of
pulmonary airways (Grotberg & Jensen 2004), liquid–liquid displacements in porous
media for either oil recovery or carbon sequestration (Olbricht 1996; Maitland 2000),
coating flows either on the inside of a cylinder or outside of a fibre (Kalliadasis &
Chang 1994; Chang & Demekhin 1999; Quéré 1999; Craster & Matar 2006; Ruyer-
Quil et al. 2008), which are of interest to heat exchangers and condensers, and
microfluidic applications (Squires & Quake 2005).

The dynamics of thin films either on the inside or outside of long cylinders can
be modelled using the long-wave approximation, which results in the derivation of a
single evolution equation for the position of the interface (Oron, Davis & Bankoff
1997; Craster & Matar 2009). Here, capillarity forces the motion of the fluid in the film
and this may lead to the formation of beads in flows down the exterior of fibres (Quéré
1999; Kliakhandler, Davis & Bankoff 2001; Craster & Matar 2006; Ruyer-Quil et al.
2008) or the development of a liquid plug that can lead to the occlusion of a tube
(Everett & Haynes 1972; Gauglitz & Radke 1988; Johnson et al. 1991; Newhouse &
Pozrikidis 1992; Hagerdon, Martyn & Douglas 2004). The driving force behind these
configurations is energy minimization through a Rayleigh mechanism. The initial
stages of the flow were described by the linear stability analysis of Goren (1962),
while its nonlinear evolution is determined by the equation developed by Hammond
(1983), derived using lubrication theory: ht + (h3[h + hzz]z)z = 0; here, h(z, t), z and t

denote the film thickness, the axial coordinate and time, respectively. In this equation,
the dependence of the curvature on the film thickness was linearized consistently with
the asymptotic theory, and as a result the equation can be used for situations when
the film is either on the exterior or on the interior of a cylinder or fibre.

Previous work on this equation has shown that despite its apparent simplicity, it
exhibits complex dynamics. This is characterized by the redistribution of the film into
collars and lobes, which correspond to local equilibrium structures. The film dynamics
evolve via slow drainage of the lobe into an adjacent collar (Hammond 1983; Lister
et al. 2006); finite-time rupture of the film separating these structures is only possible
via inclusion of intermolecular forces. Recent highly resolved numerical simulations
by Lister et al. (2006) have shown that in extended domains unsteady drainage
regimes are observed over exceedingly long time scales. These are punctuated by axial
translation of collars leading to consumption of neighbouring lobes and the birth of
new lobes in the wake of the translating collars; these are subsequently consumed
when the collar slides in a reverse direction, which results in a smaller lobe being
left in its wake. This motion grinds to a halt when collars collide with others that
are pinned at the edges of the spatial domain by the imposed boundary conditions.
Re-initiation of these episodes is possible through ‘peeling’ of a lobe, which occurs
on longer time scales. The dynamics observed by Lister et al. (2006) are even more
complex than those that accompany the evolution of thin films on planar surfaces
governed by antagonistic intermolecular forces. In those systems, isolated droplets
drift and merge on large domains over long time scales leading to coarsening to a
minimum energy state (Glasner & Witelski 2003).

Over the past two decades, research in this area has explored the effect of including
the full curvature in the Hammond equation in order to capture the formation of an
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occluding liquid plug in a coated cylinder (Gauglitz & Radke 1988); this approach has
also been complemented by full numerical simulations of the Stokes flow equations
(Newhouse & Pozrikidis 1992) and of the full set of equations including surfactant
effects (Campana, Di Paolo & Saita 2004). Previous studies have also accounted for a
gravitationally driven motion, along the cylinder axis, and coalescence of collars and
beads in flow down vertical cylinders and fibres (Quéré 1990; Tsvelodub & Trifonov
1992; Kalliadasis & Chang 1994; Quéré 1999; Chang & Demekhin 1999; Kliakhandler
et al. 2001; Craster & Matar 2006; Ruyer-Quil et al. 2008). The inclusion of gravity
in horizontal cylinders has also been addressed and shown to give rise to interesting
instabilities that manifest themselves through periodic axial non-uniformities (Moffatt
1977; Jensen 1997; Thorodsen & Mahadevan 1997; Weidner, Schwartz & Eres 1997;
Hosoi & Mahadevan 1999). Shear in core-annular flows has also been included
(Aul & Olbricht 1990; Papageorgiou, Maldarelli & Rumschitzki 1990; Kerchman
1995; Joseph et al. 1997; Kas-Danouche, Papageorgiou & Siegel 2009) and has
been shown to suppress the occurrence of capillary instabilities (Frenkel et al. 1987;
Halpern & Grotberg 2003). Yet in spite of all the previous work carried out on thin
films that coat the interior and exterior of cylinders, the effect of electrostatics and
electrokinetics on the dynamics has not received much attention.

Motivated by renewed interest in electrokinetic effects, which have emerged as a
key element of the physics through which fluids can be influenced, or through which
separation and molecular sensing can be achieved in microfluidic devices (Squires &
Quake 2005), we carefully examine the influence of electrokinetics on the deformation
of thin annular fluid layers. There is interest in, amongst other applications, transverse
electrokinetic pumps (Gitlin et al. 2003), small-scale electro-osmotic flows (Squires &
Bazant 2004), and in molecular sensing using nanoporous membranes and channels
(Chang & Yossifon 2009). The fluid-fluid arrangement we consider also occurs in
carbon capture and storage where there is interest in how one fluid, salt-water brine,
say, interacts with liquefied CO2, in a narrow fluid-filled pore; electrokinetic effects
are currently ignored in the modelling of these systems. Elucidating the effect of
electrokinetics on the stability of interfaces is important in the microfluidic and
carbon capture and storage applications both of which can involve the dynamics
of interfaces separating electrolytic and non-electrolytic fluids. In the former set
of applications, film rupture could be detrimental, while in the latter it could be
beneficial, causing the entrapment of carbon dioxide.

In this paper, we consider the dynamics of an interface separating two immiscible
fluids in a horizontal cylinder. The core fluid will be assumed to be perfectly
conducting while the annular fluid will support the development of electrokinetic
phenomena. The radial extent of the annular layer is assumed to be small in
comparison to the cylinder radius and this, along with the assumption of thin
dimensionless Debye layers, is used to derive a nonlinear evolution equation for
the interfacial dynamics. This equation accounts for flow driven by capillarity,
electrostatics and electrokinetics, and retarded by viscosity. The equation is
parameterized by an electrostatic capillary number, a dimensionless inverse Debye
length and the ratio of the interfacial to wall potentials. Our linear stability analysis
of this equation shows that the presence of electrokinetics drives instability over an
intermediate range of parameters. Our transient numerical simulations demonstrate
that, over this range, finite-time film rupture occurs in a self-similar manner, with
predictable scaling exponents. We note that in the absence of electrostatic and
electrokinetic effects, finite-time rupture is not possible according to the model.
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Figure 1. A sketch of the core-annular geometry.

The rest of the paper is organized as follows. In § 2, we provide a formulation of
the interfacial problem with particular emphasis placed on the electrokinetics, the
limits that extract the dominant physics and simplifications, and how they couple
into the fluid mechanics. An evolution equation that represents a generalization of
the Hammond equation is deduced and § 3 summarizes results from linear theory and
full numerical simulations. We primarily invoke the Debye–Hückel approximation,
but also perform comparative simulations using the full Poisson–Boltzmann equation.
Closing remarks are provided in § 4.

2. Formulation
2.1. Governing equations and boundary conditions

Consider two viscous incompressible and immiscible fluids of equal densities ρ in a
uniform cylindrical tube of radius R2, and arranged in a core-annular configuration.
The inner core fluid has viscosity µ1 while the surrounding annular fluid has viscosity
µ2; a limiting case will be considered wherein the inner fluid behaves as a perfect
conductor. In their undisturbed state, the fluids can be in a perfect core-annular
arrangement with the core fluid a circular cylinder of radius R1 <R2 so that the
interface between the two fluids is given by r = R1 in a cylindrical polar coordinate
system (r, θ, z). Such undisturbed states can become unstable and our objective is
to describe the nonlinear spatio-temporal evolution of such two-phase systems. In
general, we define the position of the interface to be r = S(z, t) (the flow is assumed
to be axisymmetric) and denote the regions 0<r <S(z, t) and S(z, t) <r <R2 by 1
and 2, respectively; the variables in each phase are distinguished by subscripts i with
i = 1, 2. A schematic is provided in figure 1.

Electrical effects follow from the electrostatic limit of the Maxwell equations for the
electric field Ei (for typical systems of interest here, magnetic effects are negligible for
frequencies in the KHz range; this follows by a comparison of terms in the magnetic
induction equation that shows that the induced magnetic field can be ignored even
for system sizes much larger than the ones considered here) so

∇ · (ε0εiEi) = ρe
i , ∇ × Ei = 0 (2.1)

where ε0 is the permittivity of free space, the εi are the relative dielectric permittivities
of each fluid and ρe

i is the volume charge density in each fluid. It is convenient to
introduce a potential φi such that

Ei = −∇φi, (2.2)

and the second of (2.1) is satisfied identically. Natural boundary conditions across an
interface are that

‖εiEi · n‖ = q/ε0, ‖Ei · t‖ = 0 (2.3)
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where q represents any interfacial charge density, the vectors n, t are the outward
pointing unit normal vector and tangent vector at any point on the interface, and
‖(·)‖ denotes the jump in (·) across the interface, that is, (·)2 − (·)1. The charge satisfies
the following conservation equation (Saville 1997):

qt + us · ∇ sq − qn · (n · ∇)us = σ1(−∇ φ1 · n) − σ2(−∇ φ2 · n), (2.4)

where σi (i = 1, 2) denote the conductivity of phase ‘i ’ and u is the fluid velocity and
the subscript s denotes that it is evaluated at the interface.

We shall assume that each electrolyte is a symmetric z : z electrolyte and use the
superscript +, − for the cationic and ionic species n

(+)
i , n

(−)
i respectively. In addition,

there is a charge neutral species, with concentration ni , from which the ionic ones
disassociate. The charge density in each fluid is related to the ionic concentrations
n

(±)
i via

ρe
i = e

(
n

(+)
i − n

(−)
i

)
(2.5)

where e is the charge on an electron.
The ionic concentrations evolve according to the Nernst–Planck equations

Dni

Dt
= ∇ · (ωikBT ∇ ni) −

(
αini − βin

(+)
i n

(−)
i

)
, (2.6)

Dn
(±)
i

Dt
= ∇ ·

(
ωi[±en

(±)
i ∇ φi + kBT ∇ n

(±)
i ]

)
+

(
αini − βin

(+)
i n

(−)
i

)
, (2.7)

where kB , T and ωi are Boltzmann’s constant, absolute temperature and the mobility of
the species (assumed equal for each species in each fluid), and D/Dt is the convective
derivative. The reaction terms arise from a kinetic model of the disassociation and
association of the ions, with rates αi, βi respectively (see e.g. Saville 1997).

It is useful to introduce the ionic ‘velocities’ v
(±)
i as

v
(±)
i = ui − ωi

[
±e∇ φi + kBT ∇ log n

(±)
i

]
. (2.8)

At the rigid surface, r =R2, where the normal is in the radial direction, n = r , we have
the following boundary conditions:

φ2 = φw, r · v(±)
2 = 0. (2.9)

The latter condition can be re-expressed as

r ·
[

± e∇ φi + kBT ∇ log n
(±)
i

]
= 0 on r = R2. (2.10)

At the interface between the two fluids, r = S(z, t) with normal n, the boundary
conditions are that

‖εin · ∇ φi‖ = −q/ε0, ‖t · ∇ φi‖ = 0, ‖n · v(±)
i ‖ = 0. (2.11)

The first two conditions represent a jump in the displacement field (Gauss’s law) if
interfacial charge is present and continuity of the tangential component of the electric
field across the interface, where we have substituted (2.2) into (2.3); the last condition
arises from integrating the ionic concentration equations across the interface. The
potential at r =0, the centre of the core fluid, is bounded and assumed constant
φ1 = φI . The potentials are arbitrary to within a constant and we fix this by assuming
that there is an equilibrium state with φ2 = 0 and associated ion concentrations n0

2.
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The Navier–Stokes equations in each region govern the flow and are written as

ρ
Dui

Dt
= ∇ ·

(
Tf

i + T e
i

)
, ∇ · ui = 0, (2.12)

assuming incompressibility, and where the fluid and Maxwell stress tensors appearing
in (2.12) are given by

Tf
i = −pi I +

1
2
µi

(
(∇ui) + (∇ui)

T
)
, Te

i = εiε0

(
EiEi − 1

2
|Ei |2I

)
. (2.13)

The boundary conditions are those of no-slip and no-penetration at the tube wall
u2(R2, z, t) = 0 and boundedness of u1(0, z, t). At the interface between regions 1 and 2
we have continuity of velocities

‖ui(S(z, t), z, t)‖ = 0, (2.14)

along with the continuity of tangential and normal stresses, the latter introducing the
effects of surface tension, γ , which take the form

‖n · (Tf + T e) · t‖ = 0, ‖n · (Tf + T e) · n‖ = γ K, (2.15)

where the normal and tangent vectors at a point on the interface are given by
n = (1, −Sz)/(1+S2

z )
1/2 and t = (Sz, 1)/(1+S2

z )
1/2, respectively, and K is the curvature

of the interface. We note that the tangential stress balance can be simplified using
the fact that ‖n · T e · t‖ = q(E · t). In the asymptotic analysis that follows we identify
and consider the limit of a perfectly conducting core which implies that the interface
is an equipotential. This implies in turn that E · t = 0 so that the usual viscous flow
tangential stress balance equation follows.

Finally, we have a kinematic condition at the interface which is

ui = St + wiSz. (2.16)

In solving the full problem formulated above, we take advantage of various limits
that are most easily seen after a non-dimensionalization and the use of dimensionless
groupings.

2.2. Non-dimensionalization

The mathematical model introduced in § 2.1 is made dimensionless by scaling lengths,
time, velocities, pressure and voltage potentials by R1, (R1µ1/γ ), (γ /µ1), (γ /R1) and
(kBT /e), respectively. The dimensionless velocities in regions 1 and 2 are written
in component form as u1 = (U, W ) and u2 = (u, w) and the corresponding pressures
are denoted by P and p in core and film, respectively. More specifically, the non-
dimensionalization is

(z, r, S) = R1(z̃, r̃, S̃), φi =
kBT

e
φ̃i,

(
Ei ,

q

ε0

)
=

kBT

eR1

(Ẽi , q̃), n
(±)
i = n0

2ñ
(±)
i , (2.17)

ρe
i = 2n0

2eρ̃
e, ω

(±)
i = ω0

i ω̃
(±)
i , (ui , vi) =

γ

µ1

(ũi , ṽi), pi =
γ

R1

p̃i . (2.18)

Hereafter we work entirely in non-dimensional variables and drop the tilde decoration.
Gauss’s law, the first of (2.1), in regions 1 and 2 becomes

∇2φ1 = −χ2ρe
1

ε2

ε1

= −χ2 ε2

ε1

(
n

(+)
1 − n

(−)
1

)
, (2.19)

∇2φ2 = −χ2ρe
2 = −χ2

(
n

(+)
2 − n

(−)
1

)
. (2.20)
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The important non-dimensional group χ is the ratio of the geometry length scale R1

to the Debye length κ ,

χ2 =
2R2

1e
2n0

2

kBT ε2ε0

=
R2

1

κ2
,

(
κ2 =

kBT ε2ε0

2e2n0
2

)
. (2.21)

At the wall, r = a = R2/R1, (2.9) remains unaltered:

φ2 = φw, r · v(±)
2 = 0, (2.22)

and on the axis r =0 we have φ1 = φI . Non-dimensionalizing the boundary conditions
(2.11) at r = S yields[

ε2

ε1

∇ φ2 − ∇ φ1

]
· n =

−q

ε1

, φ1 = φ2,
∥∥n · v(±)

i

∥∥ = 0, (2.23)

the charge equation (2.5) becomes

ρe
i = 1

2

(
n

(+)
i − n

(−)
i

)
, (2.24)

and the interfacial charge conservation equation (2.4) becomes

qt + u · ∇ sq − qn · (n · ∇)us = Σ1(−∇ φ1 · n) − Σ2(−∇ φ2 · n). (2.25)

In (2.25), Σi ≡ σiµ1/R1ε0γ represent ratios of flow to charge relaxation time scales.
The dimensionless versions of the Nernst–Planck equations (2.6) and (2.7) take the

form, starting with that for the neutral species,

Pei

Dni

Dt
= ∇ · (ωi ∇ ni) − Dai

(
ni − Kn

(+)
i n

(−)
i

)
, (2.26)

with the ionic concentrations evolving according to conservation equations

Pei

Dn
(±)
i

Dt
= ∇ ·

(
ωi

[
±n

(±)
i ∇ φi + ∇ n

(±)
i

])
+ Dai

(
ni − Kin

(+)
i n

(−)
i

)
(2.27)

or equivalently

Pei

∂n
(±)
i

∂t
+ ∇ ·

(
n

(±)
i v

(±)
i

)
= Dai

(
ni − Kin

(+)
i n

(−)
i

)
, (2.28)

where the non-dimensional ion velocities are

v
(±)
i = Peiui − ωi

[
±∇ φi + ∇ log n

(±)
i

]
. (2.29)

The dimensionless groups appearing above are the Péclet and Damköhler numbers
given by

Pei =
γR1

ω0
i kBT µ1

, Dai =
R2

1αi

kBT ω0
i

, (2.30)

which represent the ratio of flow to diffusional (due to charge) velocity scales and the
ratio of diffusion to reaction time scales, respectively. In the reaction terms, we also
have the ratio of disassociation to association rates

Ki = βin
0
2/αi. (2.31)

The dimensionless Navier–Stokes equations become

J (uit + uiuir + wiuiz) = −pir − Qχ2ρe
i φir + mi

(
∇2ui − 1

r2
ui

)
, (2.32)
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J (wit + uiwir + wiwiz) = −piz − Qχ2ρe
i φiz + mi∇2wi, (2.33)

1

r
(rui)r + wiz = 0, (2.34)

where ∇2 ≡ ∂2/∂r2 + (1/r)∂/∂r + ∂2/∂z2 with m1 = 1 and m2 = µ2/µ1 = m, the latter
representing the annulus to core fluid viscosity ratio. The dimensionless parameters
appearing in (2.32) and (2.33) are

J =
ργR1

µ2
1

, Q =
ε2ε0(kT /e)2

γR1

, (2.35)

which represent a surface tension parameter J introduced by Chandrasekhar (1961),
and an electric Weber number Q which is the ratio of electrostatic to capillary
pressures; the dimensionless inverse Debye length parameter χ2 has been defined in
(2.21).

The interfacial conditions of tangential and normal stress balances become

m
[
(uz + wr )

(
1 − S2

z

)
+ 2urSz − 2wzSz

]
= (Uz + Wr )

(
1 − S2

z

)
+ 2UrSz − 2WzSz, (2.36)

p
(
1+S2

z

)
−2mur−2mwzS

2
z +2m(uz+wr )Sz−

[
P

(
1 + S2

z

)
− 2Ur − 2WzS

2
z + 2(Uz + Wr )Sz

]
− Q

[
1

2

(
1 − S2

z

)(
φ2

2r − φ2
2z

)
− 2Szφ2rφ2z

]
+ Q

ε1

ε2

[
1

2

(
1 − S2

z

)(
φ2

1r − φ2
1z

)
− 2Szφ1rφ1z

]

=

[
Szz − 1 + S2

z

S

] (
1 + S2

z

)−1/2
, (2.37)

while the kinematic condition (2.16) retains its form. Finally, we have continuity
of velocities at r = S(z, t), no-slip and no-penetration conditions at the wall, and
boundedness of velocities at r =0.

2.3. The thin annulus limit

We proceed by assuming that the dimensionless undisturbed annular thickness is
small, that is (R2 − R1)/R1 ≡ ε � 1 (this is a useful limit in practice; see Wei &
Rumschitzki 2002). This implies that the tube wall has a dimensionless radius

a = 1 + ε. (2.38)

The interface is perturbed about its dimensionless uniform state, with an amplitude
that scales with the annulus thickness, so that its position is

S = 1 + εH (z, t), (2.39)

with H (z, t) to be found. It is convenient to introduce a stretched variable y to
describe region 2, given by

r = 1 + ε − εy. (2.40)

In terms of y, the tube wall is at y = 0 while the interface is at y =1 − H (z, t). The
flows under consideration are driven by electric fields and capillary forces, and in
the asymptotic models sought here we retain both physical effects. The magnitude
of the pressure is set by balancing the film pressure p with the capillary pressure in
the normal stress balance (2.37). For interfacial perturbations (2.39) the perturbation
capillary pressure is of the order of ε and hence we have p − p0 ∼ ε where p0 is the
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constant unperturbed value. It follows that the perturbation axial velocity from (2.33)
is of the order of ε3 and the corresponding radial velocity is of the order of ε4 as
follows by (2.34). Finally, the electric stress term in (2.37) has size Q/ε2 (assuming that
φ = O(1)) and thus we require Q ∼ ε3 to make the electrostatic effect compete with
surface tension – if Q � ε3 then surface tension does not enter. Finally, continuity
of velocities at the interface induces a flow (U, W ) ∼ ε3 in the core, which in turn
induces a pressure perturbation P − P 0 ∼ ε3 because the core region is characterized
by order-one radial and axial coordinates without a lubrication-type flow governing
the dynamics. The appropriate asymptotic expansions in film and core are, then,

u = ε4u(1) + ε5u(2) + · · · , w = ε3w(1) + ε4w(2) + · · · , p = p(0) + εp(1) + · · · , (2.41)

(U, W ) = ε3(U(1), W(1)) + ε4(U(2), W(2)) + · · · , P = P (0) + ε3P(1) + · · · . (2.42)

An inspection of the momentum equations (2.32) and (2.33) shows that the
electrokinetic effects will enter to leading order if Qχ2 ∼ ε, which along with the
scaling found for Q implies the canonical limit

Q = ε3Q, χ2 =
1

ε2
χ2. (2.43)

The latter estimate, coupled with the definition (2.21) for the Debye length, shows that
we are analysing cases when the dimensionless Debye length 1/χ is of the order of
ε, that is it is of the same order as the annular film thickness. We have also assumed
the viscosity ratio to be of order one.

We are mainly concerned with the dynamics in the film and in particular the effect
of ion mobility on interfacial instabilities. To this end, we concentrate on regimes
where electrokinetic effects in the core are negligible compared with those in the
film (see also Georgiou et al. 1991). We see from the Debye length scale (2.43) that
the charge density in the core on the right-hand side of (2.19) is of the order of
(ε2/ε1)ε

−2, implying the ordering (ε2/ε1) � ε2 for electrokinetic effects to be absent
and hence leading to ∇2φ1 = 0 to leading order. One way to achieve this is to take the
distinguished limit (ε2/ε1) ∼ ε3, for example, and this is sufficient for our purposes.

This limit also influences the boundary condition (2.23) with n · ∇ φ1 = q/ε1 to
leading order. The substitution of this result into (2.25) and assuming the core fluid
to be highly conducting, that is, Σ1 � 1, yields (Σ1/ε1)q ≈ 0. The leading-order
boundary condition given by (2.23) then gives n · ∇ φ1 ≈ 0, thereby decoupling the
potential field in the core from that of the wall fluid. Assuming that the core fluid
is drawn from a charge-neutral reservoir of fixed potential φI , the potential will be
constant and equal to φI throughout region 1. In this case, the electric field problem
in the film is closed and the Gauss law (2.24) is an identity for the local charge
concentration at the interface and is not needed in the analysis that follows (we note
in passing that if the core and film electric field problems are coupled, the Gauss law
is required and the value of q in (2.23) is determined from the charge conservation
equation (2.25) – this is the so-called leaky dielectric model). Furthermore, the ionic
concentrations are constant in the core and the ionic velocity zero. In this case, the
first two boundary conditions (2.23) are replaced by

φ2 = ΦI on y = 1 − H (z, t), (2.44)

which states that the interface is an equipotential surface. This closes the film problem
as far as the electric field problem is concerned but hydrodynamic coupling cannot
be ruled out – it turns out, as we will see below, that in the thin annular limit
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with order-one viscosity ratios hydrodynamic coupling between film and core is also
absent.

The electrokinetic effects in the film are considered in the distinguished limit of
(Pei , Dai) ∼ O(1) and the Nernst–Planck equations (2.27) reduce to (note that radial
derivatives dominate in the film)[

ω2n
(±)
2

[
± φ2 + log n

(±)
2

]
y

]
y

=
[
n

±
2 v

(±)
2(y)

]
y

= 0 (2.45)

with v2(y) denoting the y component of the ionic velocity. In this limit the ionic

concentrations instantaneously adjust to the potential and n
(±)
2 are enslaved to the

potentials φ2. The precise dependence of n
(±)
2 on φ2 determines the equation for φ2

when the ion concentrations are substituted into (2.20) (for example the classical
Poisson–Boltzmann equation which we encounter below).

The boundary conditions on v2(y) to leading order are that it is zero at both the
wall and interface. Integration of (2.45) and use of the boundary conditions yields

±φ2 + log n
(±)
2 = constant → n

(±)
2 = K± exp(∓φ2), (2.46)

where K± are constants. For the given electrolyte we assume that there exists an
electro-neutral state at a dimensionless potential φ0, say. The number density of
positive and negative ions is then equal to a neutral-state value n0

2, which is also the
value used in the non-dimensionalizations (2.17). Using the solutions (2.46) gives

K+ exp(−φ0) = K− exp(φ0) = n0
2, (2.47)

which in turn yields

n(+) − n(−) = 2K+ exp(−φ0) sinh(φ0 − φ) = 2n0
2 sinh(φ0 − φ). (2.48)

Noting the non-dimensionalizations and making use of the stretched coordinate (2.40)
and the scaling (2.43), one can use Gauss’s law (2.20) to express the Poisson–Boltzmann
equation as follows:

1

ε2
φ2yy − 1

1 + ε − εy
φ2y + φ2zz =

1

ε2
χ 2 sinh(φ − φ0). (2.49)

We emphasize that without loss of generality the reference potential φ0 can be set to
zero. We seek a solution in the form of an asymptotic expansion:

φ2(y, z, t) = φ(y, z, t) + εφ(1)(y, z, t) + · · · . (2.50)

This gives to leading order

φyy = χ 2 sinhφ, (2.51)

which must be solved subject to the wall and interface boundary conditions

φ(0, z, t) = φw, φ(1 − H (z, t), z, t) = φI . (2.52)

Given the potential distribution, the ionic concentrations follow immediately from
(2.46). It is commonplace to invoke a further approximation, the Debye–Hückel
limit, with φ � 1 so that (2.51) becomes φyy = χ2φ (this limit is appropriate as
long as the potential in the layer is close to the charge neutrality value φ0, that is
|φ − φ0| � 1, recalling that the choice φ0 = 0 has been made). This has the advantage
that simple analytic solutions emerge and we distinguish these with a superscript DH .
Numerical solutions or a formal analytic expression involving elliptic functions can
be deduced for the general case. The linearized Poisson–Boltzmann equation subject
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to the boundary conditions (2.52) yields

φDH (y, z, t) = φW coshχy +

(
φI − φW coshχ (1 − H )

sinhχ (1 − H )

)
sinhχy. (2.53)

Using the expansions (2.41) and (2.42) in the normal stress balance equation (2.37)
gives to leading order

p(1)|(1−H ) = 1
2
Q φ2

y

∣∣
(1−H )

+ H + Hzz. (2.54)

The leading-order radial momentum equation becomes

p(1)y − Qχ2φy sinhφ = 0, (2.55)

which can be integrated to give

p(1)(y, z, t) = Qχ 2 cosh2 φ(y, z, t) + K(z, t), (2.56)

where the function K(z, t) is determined by substituting the boundary value (2.54)
into the solution (2.56). The result is

K(z, t) = 1
2
Q

[
φ2

y |1−H − 2χ 2 coshφ
]
+ H + Hzz, (2.57)

with the limiting Debye–Hückel case obtainable in terms of H (z, t) as follows:

KDH (z, t) =
1

2
Qχ 2

[(
φW − φI coshχ (1 − H )

sinhχ (1 − H )

)2

− φ2
I

]
+ H + Hzz. (2.58)

An evolution equation is obtained from the kinematic condition (2.16) once the
leading-order film velocities are determined. The leading-order lubrication balance in
(2.33) enables us to find w(1) in the form

w(1)(y, z, t) =
y2

2m
Kz(z, t) + yL(z, t) + M(z, t), (2.59)

which on using the no-slip condition w(1)(0, z, t) = 0 at the wall along with the
leading-order tangential stress balance,

w(1)y(1 − H, z, t) = 0, (2.60)

gives

w(1)(y, z, t) =
1

m

[
1

2
y2 − (1 − H )y

]
Kz(z, t). (2.61)

Continuity then provides the corresponding radial velocity:

u(1)(y, z, t) =
y3

6m
Kzz − y2

2m
(1 − H )Kzz +

y2

2m
HzKz. (2.62)

Substituting (2.61) and (2.62) into the kinematic condition (2.16) and introducing
a new slow time scale by ∂/∂t → (1/3m)ε3∂/∂t produces the following evolution
equations:

Ht +
[
(1 − H )3Kz

]
z
= 0, Kz = Hz + Hzzz +

1

2
Q

∂

∂z

(
φy |1−H

)2
, (2.63)

KDH
z = Hz + Hzzz +

1

2
Qχ 2 ∂

∂z

(
φW − φI coshχ (1 − H )

sinhχ (1 − H )

)2

. (2.64)
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In the numerical work that follows, we prefer to introduce a new dependent variable

η(z, t) = 1 − H (z, t), (2.65)

which represents the dimensionless film thickness so that η = 0 corresponds to
solutions which touch the solid wall. In terms of η, the equation becomes

ηt +

[
η3(ηz + ηzzz) − 1

2
Qη3

{
φ2

y |η
}

z

]
z

= 0, (2.66)

with the Debye–Hückel version as

ηDH
t +

[
ηDH3

(
ηDH

z + ηDH
zzz

)
− 1

2
Q̂χ 2ηDH3

{(
1 − Φ coshχηDH

sinhχηDH

)2
}

z

]
z

= 0, (2.67)

where

Φ = φI/φW, Q̂ = Qφ2
W . (2.68)

This conveniently embeds the wall potential in Q̂. So for the Debye–Hückel limit
there are now three parameters Q̂, χ and Φ . The equation is to be solved with
appropriate initial conditions about the undisturbed position η = 1 and periodic
boundary conditions in z.

In summary, the interfacial dynamics are governed by (2.66) or (2.67) depending
on whether the Debye–Hückel limit is invoked or not. The former is coupled to
the Poisson–Boltzmann equation (2.51) for the potential in the film, φ. The latter
was derived by first linearizing (2.51) to obtain the Debye–Hückel equation; this is
permissible when the magnitude of the potential is relatively small. Both evolution
equations, which have been derived in the thin-annulus limit and for cases wherein
the electric permittivity of the bulk far exceeds that of the film, are parameterized
by three dimensionless groups: Φ represents the ratio of the interfacial to the wall
potential, Q is a rescaled electrostatic capillary number, and χ̄ is a rescaled inverse
Debye length (large values of this parameter correspond to thin electric double
layers and vice versa). Furthermore, we have considered situations in which the
Debye length is of the same order as the thickness of the film, and the magnitude of
electrostatic effects is relatively small; this was done in order to balance electrokinetics
and electrostatics with capillary effects. Finally, although the solutions of (2.67) will
primarily be discussed below, it is important to note the limitations of the Debye–
Hückel approximation whose validity may become questionable if electro-neutrality
does not hold over a region in the film; such situations will arise when electric double
layers scale with the film thickness (Chang & Yeo 2010).

3. Results
3.1. Limiting cases and linear stability

In the absence of an electric field (Q =0), the evolution equation reduces to that
derived and studied by Hammond (1983). Hammond finds that the capillary forces
drive the interface towards the wall but it never actually touches the wall; instead
the flow evolves into a quasi-static configuration of ‘lobes’ and ‘collars’. An extensive
study by Lister et al. (2006) has established some intricate dynamics at very long
times, including the spontaneous axial translation of a lobe up and down the cylinder.
Our model equation (2.66), therefore, contains additional physical effects that modify
Hammond-type dynamics significantly because they lead to finite-time wall touchdown
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of the interface, as will be shown below. It is also found that some novel non-uniform
stable steady states are also possible at sufficiently large values of the parameter χ ,
establishing that electrokinetic effects act as a nonlinear saturation mechanism.

The absence of electrokinetics provides another limit that corresponds to the
dynamics of a dielectric film that surrounds a perfectly conducting core fluid so that
there is a constant voltage drop between fluid–fluid interface and the cylinder wall.
This case has been derived and studied by Wang (2009) and arises from (2.66) and
(2.67) in the limit χη → 0; the electrostatic equation becomes

ηt +
[
η3(ηz + ηzzz) + βηz

]
z

=0, (3.1)

where β = Q̂(1 − Φ)2 > 0 (notably the approach to this limiting equation is valid
for both the nonlinear and linearized Poisson–Boltzmann equations). It has been
shown in Wang (2009) that spatially periodic solutions of (3.1) starting from rather
general initial conditions, terminate in self-similar finite-time touchdown singularities
in contrast to the Hammond equation (Q̂ = 0). An extension of these results to non-
zero values of χ is carried out in the present study. In addition, Wang (2009) performed
boundary integral simulations and verified the touchdown dynamics supported by the
thin film electrostatic system.

The linear stability of the general equation (2.66) is studied by writing η = 1 +
η̂ exp(ikz + st) and linearizing with respect to η̂. The dispersion relation is

s(k) = k2

(
1 − Q

2

∂φ2
y

∂η

∣∣∣
η=1

− k2

)
, (3.2)

which in the Debye–Hückel limit becomes explicit as

sDH (k) = k2
(
1 − Q̂λ(χ ) − k2

)
, λ(χ ) =

χ3(Φ coshχ − 1)(coshχ − Φ)

sinh3 χ
. (3.3)

Instability is only possible if Q̂λ(χ ) < 1 and because λ→ − (1 − Φ)2 < 0 as χ → 0
we confirm that small values of χ will make the flow linearly unstable (in the limit,
the results of Wang (2009) show that finite-time touchdown takes place, but such
conclusions can only be drawn from nonlinear studies). The function λ is shown in
figure 2 for varying Φ and has a clear (positive) maximum suggesting that there can
be regions of χ that stabilize the flow linearly; the width of these regions depends
on Q̂ and Φ . The maximal growth rate versus χ (figure 2c,d ) illustrates this; for all
cases presented having Φ �=0 we observe windows of stability for a range of χ . The
size of the stability windows increases as Φ increases as confirmed by the results at
two different values of Q̂= 1, 2. The linear results presented in figure 2 have been
calculated in the Debye–Hückel limit; calculations with the full model give results
that are almost indistinguishable and are therefore not shown. It is worth noting that
increasing φi/φw substantially eventually leads to situations in which the potential
across the layer is quantitatively different, but qualitatively similar. Figure 3 shows
results for φi/φw = 5, notably the growth rates differ substantially, but the trends are
unchanged.

To interpret why the model gives an unstable region, followed by stability then by
instability, with varying Φ , we turn to the profiles of the potential φ shown in figure 4
(in the Debye–Hückel limit, this potential is given by (2.53) with H ≡ 0). For Φ =0
(that is for zero potential at the interface, φI = 0) the system is always unstable (see
figure 2a) and there is a monotonically decreasing electric field (recall that the electric
field in the radial direction is −φy) across the layer for the range of values 1 � χ � 10
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Figure 2. Linear stability: (a) the function λ versus χ; (b) typical dispersion curves, note the

non-monotonic behaviour with respect to χ (Q̂ = 1, Φ = 2); (c, d ) the maximal growth rate

versus χ for varying Φ and Q̂ = 1, 2 in (c) and (d ), respectively. (e) The solution to (3.3) with
the growth rate, s = 0, showing the critical χ̄ for stability at k = 0.5.

as seen in figure 4(a). At values of χ smaller than approximately 1, the electric field
is almost constant as evidenced by the linear variation of the potential across the
layer, while at larger values (e.g. χ = 10) the field decreases rapidly to zero outside the
Debye layer which is relatively small in this case. As Φ (equivalently φI ) increases, this
monotonic decreasing behaviour of the potential across the layer persists if ΦI and χ

are sufficiently small, as can be seen from the results of figure 4(b) which correspond
to a value of φI =1/2 and show that for χ approximately less than unity the electric
field is almost constant. These are cases in which the Debye layer thicknesses are of
the same order as the annular layer thickness, and there is an effective electrostatic
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Figure 4. The potential across the fluid layer for φw = 1 and φi varying from 0, 1/2, 1 to 2
for χ = 1, 3, 10.

pressure pulling the interface towards the wall causing instability. At larger values
of χ , however, the electric field attains high positive values at the wall (y = 0) and
decreases to relatively large negative values at the interface, the effect being more
pronounced as χ increases. For interface potentials 1/2, 1, 2 in figure 4(b–d ) and
large values of χ , the Debye layer thickness is much smaller than the annular layer
thickness and electrical double layers form at both the wall and interface. For the
value χ = 3, these double layers are sufficiently close that they interact and repel each
other acting to stabilize the system. These effects maybe of relevance to separation
technology involving the use of nanoporous membranes and nanochannels (Chang &
Yeo 2010) where the electric double layers are no longer thin as compared to the
dimensions of the channel and overlap with one another. Increasing χ further to
values χ = 10 for example leads to very narrow weakly interacting double layers and
their effect on stability is weak.

These stability mechanisms can be observed in figure 2(b), which shows growth rate
curves as χ increases for the case Φ = 2. When χ = 0, the usual capillary instability is
active. As χ increases to a value of 1, double layers form and interact by pushing the
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interface away from the wall, leading to a partial stabilization seen as a decrease of
both the maximum growth rate and the band of unstable waves. A further increase to
χ = 3 leads to a complete linear stabilization – the interaction of the double layers is
optimal in the sense that sufficiently large repulsive forces are generated to completely
stabilize capillary instability. As χ is increased further to a value of 10, the growth
rate increases and the flow becomes unstable again. The double layers in this case
are concentrated at the wall and interface and their stabilizing effect is significantly
reduced.

The discussion above was based on linear aspects of the dynamics and we turn next
to the solution of the nonlinear problem in order to quantify the physical observations
afforded by linear theory.

3.2. Numerical solution of the evolution equations

The evolution equations (2.66) and (2.67) for the film thickness were solved
numerically using three different methods, which served as a means of comparison
given the highly nonlinear nature of the equations. All methods employ the method
of lines with a solver designed for stiff problems (e.g. Gear’s method). The first
scheme used is EPDCOL (Keast & Muir 1991), which is based on a finite-element
discretization in space. The second scheme is a spectral method, which uses fast
Fourier transforms in space and backwards Gear for time. The final scheme uses
a finite-volume method for space. The last method has the advantage of behaving
better near discontinuities, which occur in the region of film rupture. Unless indicated
otherwise, we mainly present results using (2.67), which is in the Debye–Hückel limit.

In a typical simulation, 2 × 103 grid points were used and the computations
were stopped when the film height was within 10−5 dimensionless units from the
wall. Numerical solutions of (2.67) were obtained on a finite domain −L � z �
L, with L = π or 2π typically used, and subject to periodic boundary conditions.
Larger domains with L = 5π have been investigated in order to discuss the impact
of electrokinetics on the axial translation of collars observed by Lister et al. (2006).
Because of the existence of a finite-time touchdown and steady-state solutions, we
do not observe axial translation of collars. In addition, the results yield qualitatively
similar information to a shorter domain, so we focus on those here. Furthermore, the
film evolution was initiated by perturbing the film height as η(z, 0) = 1 − A cos(πz/L)
with A= 0.1. For each of our computations, we have checked that the total volume
of fluid in the film is conserved. As an additional check we compared our solutions
against linear theory and found them to be in excellent agreement near η = 1.

The full Poisson–Boltzmann model gives results qualitatively in agreement and
some comparative computations will be shown below. This full model requires the
computational schemes above to be augmented with the nonlinear Poisson–Boltzmann
equation (2.51) solved across the fluid layer at each grid point. The coupling to the
evolution equation is via the potential gradient at the interface. Computations with
the full model are numerically intensive and (2.51) is solved iteratively as a two-point
boundary value problem using upto 2000 points across the layer. The iterative scheme
rapidly converges, yielding the potential gradient at the interface.

In figure 5, we plot representative final film profiles as the parameters χ̄ , Q̂ and
Φ vary. All parameters are chosen so that the corresponding linear solutions are
unstable as can be confirmed by the results of figure 2 (cases which correspond to
linearly stable solutions and which have moderate initial amplitudes are trivial in
the sense that they lead to uniform flat film states at large times). In particular, we
compute with values that correspond to both situations in which the film is capillary
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Figure 5. Final film profiles for the film as a function of the parameters χ̄ , Q̂ and Φ . Top

row has fixed Φ (Φ =2), the next fixed Q̂ (Q̂ = 1) and the final row has fixed χ (χ = 1). The
initial film height is η = 1 − A cos(πz/L), where L = 2π and A =0.1.

unstable at relatively small values of χ̄ , and other values in which it is unstable
at large values of χ̄ when the Debye layer thicknesses are small and confined to
the vicinity of the wall and interface (these regions can be identified in figure 2c,d
for example). More specifically, all results in figure 5 correspond to the small χ̄

instability island except those in figure 5(h) which have χ̄ = 10 and correspond to
second instability island as seen in figure 2(d ) for example. This difference is quite
important as we show below, because our results indicate that even though linear
theory predicts instability, the ultimate nonlinear regime supports stable non-uniform
steady states. The computations shown in this case are for the Debye–Hückel limit,
and a qualitatively similar behaviour occurs for the full Poisson–Boltzmann’s case.

For suitably chosen parameters, then, the film touches the wall in finite time, in
contrast to the case studied by Hammond (1983) in which electrokinetics are absent
and the numerical evidence suggests that the film can approach the wall only in
infinite time. In that case, Q̂= 0, capillary forces cause perturbations to grow in time
and drive the formation of ‘collars’. For small values of Q̂, the initial stage of the film
evolution is similar to that described by the Hammond equation, but when the
film approaches the wall, the electrostatic pressure increases and causes a ring-like
rupture because touchdown occurs simultaneously at two points on the tube wall;
see figure 5(a) for instance. This touchdown behaviour is similar to that observed
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by Vaynblat, Lister & Witelski (2001) when van der Waals forces are included in
the model rather than electric fields. As Q̂ is increased further, electrostatic forces
become more dominant and lead to rupture of the film at the origin of the domain
(see figure 5c,d ); this will be referred to below as ‘line rupture’ because touchdown
takes place at a single value of z. In the results in figure 5(a–d ) we fix χ̄ =0.5, Φ = 2
and vary the electric field strength parameter Q̂. Linear theory predicts instability for
these values and in fact increasingly larger maximum growth rates as Q̂ is raised.
The nonlinear results predict finite-time touchdown in this case with Q̂ controlling
the ultimate topology of the final state.

The second row of results (figure 5e–h) fix Q̂= 1, Φ = 2 and present final profiles as
χ̄ is varied. In figure 5(e,f ), a similar behaviour occurs with a ring rupture occurring
for values of χ̄ smaller than one approximately (recall that χ̄ is the scaled ratio
of geometric to Debye length scales). As the magnitude of this parameter increases,
the radius of the ring decreases (equivalently, the axial distance between touchdown
points decreases) and beyond a critical value of χ̄ , line rupture emerges instead (see
figure 5g). For larger values of χ̄ , an electric double layer forms, stabilizing the film
as shown in figure 2. The critical value of χ̄ that stabilizes the film is found by
solving (3.3) with s = 0. For values of χ̄ below the critical value, the film is unstable
and rupture in finite time always occurs. Near the critical point, λ increases with
χ̄ as shown in figure 2(e); therefore the critical point, found from the solution to
Q̂λ= 1 − k2, decreases as Q̂ increases. For relatively large values of χ , the double
layers are confined to the near-wall and near-interface regions, and one would expect
the film to be unstable, leading to rupture; this is based on the results of the linear
stability analysis presented above. In the nonlinear regime, however, as the film thins,
the double layers interact and this gives rise to the steady-state profile presented in
figure 5(h).

The last row of results (figure 5i–l ) fixes χ̄ =1, Q̂= 2 and varies the parameter
Φ that represents the potential difference between the film interface and the wall.
We see that a ring rupture event occurs for small values of Φ; see figure 5(i–k )
corresponding to Φ =0, 0.5, 1.5. As Φ increases, the rupture points move closer and
as seen in figure 5(l ) a line rupture occurs at Φ = 2 (and at higher values of Φ , in fact).
For the parameter values of the third row of results, linear theory predicts instability
for all values of Φ as readily seen from the results of figure 2(d ). Once again, the
value of Φ can be used to control the topology of the ultimate touchdown profiles.
Our results show that if the linear solution corresponding to a given set of parameter
is unstable, then rupture can take place. Whether a ring- or line-like rupture emerges
is a nonlinear phenomenon but line rupture replaces a ring rupture as the parameters
vary so that the maximum linear growth rate increases. In situations in which thin
electrical double layers form at the wall and interface, and linear theory predicts
instability, we have discovered some intriguing non-uniform steady states that are
also dynamically stable because they are computed using a time-marching numerical
method.

In figure 6, we plot the minimum film height as a function of time for all parameter
values shown in figure 5, with figure 5(a), (b) and (c) depicting the evolution to the
final profiles shown in the first, second and third rows, respectively, of the figure.
We see from figure 6(a), which varies Q̂, that the time to touchdown decreases as
Q̂ increases. This is expected because an increase in Q̂ corresponds to an increase
in the electrostatic forces that act to attract the interface to the wall (equivalently,
larger linear growth rates are found as Q̂ increases). Figure 6(b), on the other hand,
shows that for fixed values of Q̂= 1, Φ =2, an increase in χ̄ leads to increased
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Figure 6. Minimum film height ηmin as a function of time for the parameters of figure 5. The
initial film height is η = 1 − A cos(πz/L), where L =2π and A = 0.1.

rupture times. This behaviour can be explained by noting that the instability-inducing
attractive force due to the electrokinetics decreases as the Debye length relative to the
film thickness decreases (quantitatively, maximal linear growth rates decrease with
moderate values of χ̄; see the left instability island in figure 2c for example). For
χ =10, however, the minimal film thickness decreases initially in response to linear
instability, but then asymptotes to a constant value as time increases, confirming the
non-uniform steady state depicted in figure 5(h) discussed earlier. Figure 6(c) shows
the film reaching the wall in the shortest time for Φ = 0 and 2. These results can
be explained by appealing to those presented in figure 2 obtained from the linear
stability analysis: for χ = 1 and Q̂ =2, the maximal linear growth rate is largest for
Φ = 0; this is followed by the maximal growth rate associated with Φ = 2, Φ = 1/2
and Φ = 1.

The evolution of the film to the steady-state profile and the potential across the
film at z = 0 (the location of the minimum height) are plotted in figure 7. On the
basis of linear theory the initial perturbation, for χ̄ � 1, is unstable to capillary forces
near η ∼ 1 and the electric field introduces a weak repulsive force. As time increases,
the film moves closer to the wall, which brings the wall and interfacial Debye layers
closer together and increases the repulsive electrokinetic force. At a sufficiently long
time the film attains a stable steady-state profile at a height where the capillary and
electrokinetic forces balance. Examining the evolution equation (2.67) in the limit
χ̄η � 1, the electrokinetic term can be simplified, yielding

ηt +

[
η3ηzzz + η3ηz

(
1 − 2ΦQ̂χ̄3

exp(χ̄η)

)]
z

= 0. (3.4)

In this form it is clear that the electrokinetic part is always positive and introduces
a repulsive force. Figure 7(c,d ) depicts the dependence of the minimum steady-state
film height on χ̄ with Φ varying parameterically, for two values of Q̂. From (3.4)
we can see that the repulsive electrokinetic force increases with Φ and Q̂, causing
the steady minimum film height to increase as shown in figure 7(c,d ). On the other
hand, increasing χ̄ thins the Debye layers, which decreases the repulsive force and
the stable film height is closer to the wall. Below a critical value of χ̄ , determined
by linear stability theory as a function of Φ and Q̂, the film is stable as indicated
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Figure 7. Evolution of the film to the steady-state profile (a) and potential across the film
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the parameters Q̂, χ̄ and Φ (c,d ). The lines in (a,b) correspond to dimensionless times,
t = 0.1, 1, 10, 100, 1000, and the arrow shows the direction of increasing time.

by ηmin =1. A further increase in the Debye length (below χ̄ = 4.0 shown in figure 7)
brings the film into an unstable regime, discussed previously, with ηmin = 0. For larger
values of χ̄ , the location of the minimum film height moves closer to the wall but
with a flattening of the profile in time. As a result, χ̄η � 1, even for small Debye
lengths and finite time, touchdown of the film does not appear to be possible.

3.3. Finite-time touchdown: scalings and self-similar solutions

It is evident from the simulations that touchdown of the interface on the wall can occur
in finite time. It is sufficient to study the touchdown dynamics using (3.1), which is valid
for χη � 1. The reason for this is that we are seeking a local description of touchdown
solutions which by definition must satisfy η � 1, implying that the emerging structures
will satisfy (3.1) asymptotically (the evolution and singular solutions of (3.1) have
been considered by Wang 2009). The positive quantity Q̂(1 − Φ)2 can be scaled out
of (3.1) by setting η = (Q̂(1 − Φ)2)1/3η̂ and t = t̂/(Q̂(1 − Φ)2). In the limit Φ → 1 (i.e.
β → 0+), the next-order term in the expansion of the electrokinetic contribution is
weaker than the η3ηz term and the interface then follows a scaling of t−1/2 as time
progresses without rupture. The resulting scaling in this case is precisely that of the
Hammond equation (Jones & Wilson 1978; Hammond 1983) as shown in figure 8(d ).

We anticipate that the touchdown dynamics are self-similar. In order to extract the
similarity scalings, we balance the electrokinetic and capillary pressures, and adopting
a similarity scaling

η = ταH(ζ ), ζ = (z − ztouchdown)/τ
γ , (3.5)
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Figure 8. The behaviour of the solution near touchdown in the Debye–Hückel limit. The

parameters in (a–c) are χ = 1, Q̂ = 1, Φ = 2 with initial condition η = 1 − A cos(πz/L) with
A = 0.1 and −L <x < L, L = π/k and ttouchdown =2.82615. (a) The convergence to the similarity
scalings as touchdown is approached. (b) The height profiles and (c) their collapse to a
similarity ODE. In (c), the 10 profiles are from Nttouchdown/10 for N = 1, 2 . . . 10, and the
dots are from the solution to the similarity ODE (3.6). (d ) The evolution of η with time for
Φ =1, 1.1, 1.25 showing that for Φ = 1 the film thins as t−1/2; this scaling is denoted by the
dotted line.

where τ = (ttouchdown−t), gives α = 1/3 and γ = 1/2. To confirm these scalings we present
numerical solutions that follow the evolution to rupture for a typical case having
Q̂ =1, Φ = 2 and χ =1; the results are depicted in figure 8. Figure 8(a) shows the
evolution of the minimum value of η and the corresponding curvature ηzz. According
to the order-of-magnitude arguments, the behaviour is expected to be η(zmin, τ ) ∼ τ 1/3

and ηzz(zmin, τ ) ∼ τ−2/3 as τ → 0, and these predictions are fully confirmed by the log–
log plots in figure 8(a). Figure 8(b) shows the evolution of the interface to touchdown
and includes the final computed profile characterized by ηmin < 10−5. These self-similar
scalings also indicate that ηz(zmin, τ ) ∼ τ−1/6, implying that the slope becomes large
as rupture is approached, which ultimately renders the present long-wave theory
invalid. In a related study of the planar film rupture in the presence of van der
Waals forces, Zhang & Lister (1999) also predict a cusp singularity. In both cases,
as the singularity is approached the disparity of scales is no longer valid and the
full Stokes and electrokinetic equations need to be considered in the vicinity of the
touchdown singularity, with the solution found here setting the far-field conditions for
the associated elliptic problems. We note that the direct simulations of Wang (2009)
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predict touchdown singularities in good qualitative agreement with what is found
here; the details very close to the singularity, however, are different as expected.

The asymptotic self-similar behaviour of the interface is described by the scaling
function H(ζ ); substituting the scalings (3.5) into either of (3.1), (2.66) or (2.67) and
retaining the dominant terms for τ � 1 yields the ordinary differential equation (ODE)

− 1
3
H + 1

2
ζH′ + [H3H′′′ + Q̂(1 − Φ)2H′]′ = 0, (3.6)

which must be solved for −∞ <ζ < ∞. The asymptotic behaviour of solutions for
large ζ is H ∼ Aζ 2/3, and values of A, H (0), H ′′(0) consistent with that behaviour
were found numerically. The resulting numerical solution of (3.6) is represented by
heavy dots in figure 8(c). Using the evolving profiles from figure 8(b) and the ansatz
(3.5), we obtain a sequence of scaling functions that converge to the solution of (3.6),
as confirmed by the results in figure 8(c); as expected, agreement improves as the
singular time is approached. The parameters in this figure are for a regime where the
film is linearly unstable and χη becomes sufficiently small that (3.1) holds.

For completeness we consider analogous numerical solutions for the full Poisson–
Boltzmann system governed by (2.66) coupled with (2.51), rather than using the
Debye–Hückel version (2.67). Results from numerical simulations are given in
figure 9(a)–(d ) for parameter values χ̄ = 1, Q̂ = 1 and Φ =2. Figure 9(a) depicts
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the linear dispersion relation and shows that the growth rates of the full system are
overestimated by those of the Debye-Hückel approximation. As a result, the time to
touchdown for the present simulations is larger for the Poisson–Boltzmann system as
confirmed by the results in figure 9(c). As rupture takes place and the value of χ̄η

becomes small locally, the same self-similar structures described above are expected to
govern the dynamics – this is because the Poisson–Boltzmann equation (2.51) linearizes
for χ̄η � 1 and leads to the Debye–Hückel version (2.67). These predictions are
confirmed by the numerical solutions; figure 9(b) shows the evolution, as the rupture
time is approached, of η and ηzz at the minimum interface location point z = zmin .
The logarithmic plot predicts the behaviour η(zmin , t) ∼ τ 1/3 and ηzz(zmin, t) ∼ τ−2/3, in
complete agreement with the self-similar theory outlined above. Figure 9(d ) compares
the profiles near touchdown with the self-similar solution of (3.6) (the latter depicted
by heavy dots); as time tends closer to the rupture time τ =0, the computed profiles
converge to the self-similar scaling function H with excellent agreement between the
two.

4. Conclusions
This paper explores the influence of electrokinetics on the dynamics of an annular

electrolyte film that surrounds a perfectly conducting fluid core in a horizontal
cylinder. A novel evolution equation for the interfacial position has been derived in
the thin-film limit which includes the competing effects of capillary and electrokinetic
forces. The latter are calculated by solving a scaled Poisson–Boltzmann equation
in the film or its Debye–Hückel approximation. There are three parameters in the
problem: a scaled electric Weber number Q̂ representing the ratio of electrostatic to
capillary forces, a scaled dimensionless inverse Debye length χ , and Φ denoting the
ratio of interfacial to wall potentials. The asymptotic analysis is carried out in the
lubrication limit, and canonical scalings are introduced in order to allow capillary
and electrokinetic effects to compete. Linear aspects of the flow are analysed and
extensive numerical simulations into the nonlinear regime have been carried out. The
computations predict three canonical evolution regimes depending on the controlling
parameters.

When disturbances to the interface are linearly stable, the flow is damped and
produces a uniform perfectly cylindrical interface – this typically happens when the
Debye length is comparable to the undisturbed film thickness, that is χ = O(1). A
typical case can be seen in figure 2(c) for Q̂= 1, Φ = 1/2 and χ =3, which predicts
damping, and the corresponding voltage potential in the film shown in figure 4(b),
where it is concluded that the electric field acts to repel the interface from the wall.

If the parameters are such that there exist linearly unstable modes then the ultimate
evolution is either a rupture of the annulus in finite time or the development of
stable steady states characterized by spatially non-uniform interfacial shapes. These
phenomena are only possible if electrokinetic effects are present and cannot occur
in the system studied by Hammond (1983) and Lister et al. (2006). In addition,
the shapes of ultimate ruptured states can be controlled by varying the governing
parameters to produce what we have termed as ring rupture (arising when touchdown
takes place simultaneously at two points on the wall; see figure 5a for example) or
line rupture characterized by a single touchdown point as in figure 5(c), for example.
Our computations show that ring rupture can be converted to line rupture in three
different ways: First, by increasing the electric Weber number Q̂ (all other parameters
being equal) and thus imposing a larger attractive force between the interface and the
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wall (see figure 5a–d ); second, by increasing χ to moderate values so that the scaled
Debye length is initially large but then decreases and induces a larger attraction
between the interface and the wall (see figure 5e–h, excluding the results of figure 5h,
whose emergence is discussed below); third, by increasing Φ so that the interfacial
potential increases relative to that of the wall and again inducing a larger electrostatic
attraction between the interface and the wall (see figure 5i–l ). In all cases in which
rupture occurs, our analytical and computational results predict that the structures
are self-similar, with the minimum film thickness scaling as (ttouchdown − t)1/3, where
ttouchdown denotes the touchdown time.

The third canonical evolution regime is a novel nonlinear phenomenon discovered
here for the electrokinetic systems under investigation. Extensive computations show
that it is possible to attain a balance between capillary and electrokinetic forces to
produce spatially non-uniform steady states. Linear theory cannot predict these but a
band of linearly unstable modes must be present in order to produce a non-uniform
state. The computed steady states are stable in the sense that they are calculated by
solving initial value problems, and we have established that they emerge when the
value of χ is moderately large; see for example figures 5(h) and 7. In this regime, the
scaled Debye length is small relative to the undisturbed film thickness and electrical
double layers form at the interface and the wall. These layers act to reduce the impact
of capillary instability by their mutual repulsion, and in linear terms the maximum
growth rate of the instability is reduced; see for example the lower growth rates that
are obtained at large χ in figure 2(c,d ). Nonlinearly, however, the system evolves to
the non-uniform steady states shown here. The collective results of figure 7 show
that if the steady states are stable (in the sense that they are obtained by solving an
initial value problem) then the minimum film thickness decreases as χ increases; see
figure 7(b,c). Physically, this is understood by noting the increase in the linear growth
rates as χ increases and the thickness of the electrical double layers decreases, thus
thwarting their mutual repulsion.
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